Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 13(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38534430

ABSTRACT

Invasive alien species (IAS) are a major biosecurity threat affecting globalisation and the international trade of agricultural products and natural ecosystems. In recent decades, for example, field crop and postharvest grain insect pests have independently accounted for a significant decline in food quantity and quality. Nevertheless, how their interaction and cumulative effects along the ever-evolving field production to postharvest continuum contribute towards food insecurity remain scant in the literature. To address this within the context of Africa, we focus on the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), and the larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae), two of the most important field and postharvest IAS, respectively, that have invaded Africa. Both insect pests have shown high invasion success, managing to establish themselves in >50% of the African continent within a decade post-introduction. The successive and summative nature of field and postharvest damage by invasive insect pests on the same crop along its value chain results in exacerbated food losses. This systematic review assesses the drivers, impacts and management of the fall armyworm and larger grain borer and their effects on food systems in Africa. Interrogating these issues is important in early warning systems, holistic management of IAS, maintenance of integral food systems in Africa and the development of effective management strategies.

2.
Sci Rep ; 14(1): 5045, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424443

ABSTRACT

The future of the food system on the planet is increasingly facing uncertainties that are attributable to population growth and a surge in demand for nutritious food. Traditional agricultural practices are poised to place strain on production, as well as natural resources and ecosystem services provided, particularly under a changing climate. Given their remarkable attributes, including a low environmental footprint, high food conversion ratio, rapid growth and nutritional values, edible insects can play a vital role in the global food system. Nonetheless, substantial knowledge gaps persist regarding their diversity, global distribution, and shared characteristics across regions, potentially impeding effective scaling and access to edible insects. Therefore, we compiled and analysed the fragmented database on edible insects and identified potential drivers that elucidate insect consumption, globally, focusing on promoting a sustainable food system. We collated data from various sources, including the literature for a list of edible insect species, the Global Biodiversity Information Facility and iNaturalist for the geographical presence of edible insects, the Copernicus Land Service library for Global Land Cover, and FAOSTAT for population, income, and nutritional security parameters. Subsequently, we performed a series of analytics at the country, regional and continental levels. Our study identifies 2205 insect species, consumed across 128 countries globally. Among continents, Asia has the highest number of edible insects (932 species), followed by North America (mainly Mexico) and Africa. The countries with the highest consumption of insects are Mexico (450 species), Thailand (272 species), India (262 species), DRC (255 species), China (235 species), Brazil (140 species), Japan (123 species), and Cameroon (100 species). Our study also revealed some common and specific practices related to edible insect access and utilisation among countries and regions. Although insect consumption is often rooted in cultural practices, it exhibits correlations with land cover, the geographical presence of potentially edible insects, the size of a country's population, and income levels. The practice of eating insects is linked to the culture of people in Africa, Asia, and Latin America, while increased consciousness and the need for food sustainability are driving most of the European countries to evaluate eating insects. Therefore, edible insects are becoming an increasingly significant part of the future of planetary food systems. Therefore, more proactive efforts are required to promote them for their effective contribution to achieving sustainable food production.


Subject(s)
Edible Insects , Animals , Humans , Ecosystem , Insecta , Allergens , Cameroon , Thailand
3.
Front Insect Sci ; 3: 1204278, 2023.
Article in English | MEDLINE | ID: mdl-38469519

ABSTRACT

The fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith) is a global invasive pest of cereals. Although this pest uses maize and sorghum as its main hosts, it is associated with a wide range of host plants due to its polyphagous nature. Despite the FAW's polyphagy being widely reported in literature, few studies have investigated the effects of the non-preferred conditions or forms (e.g., drought-stressed forms) of this pest's hosts on its physiological and ecological fitness. Thus, the interactive effects of biotic and abiotic stresses on FAW fitness costs or benefits have not been specifically investigated. We therefore assessed the effects of host plant quality on the developmental rates and thermal tolerance of the FAW. Specifically, we reared FAW neonates on three hosts (maize, cowpeas, and pearl millet) under two treatments per host plant [unstressed (well watered) and stressed (water deprived)] until the adult stage. Larval growth rates and pupal weights were determined. Thermal tolerance traits viz critical thermal maxima (CTmax), critical thermal minima (CTmin), heat knockdown time (HKDT), chill-coma recovery time (CCRT), and supercooling points (SCPs) were measured for the emerging adults from each treatment. The results showed that suboptimal diets significantly prolonged the developmental time of FAW larvae and reduced their growth rates and ultimate body weights, but did not impair their full development. Suboptimal diets (comprising non-cereal plants and drought-stressed cereal plants) increased the number of larval instars to eight compared to six for optimal natural diets (unstressed maize and pearl millet). Apart from direct effects, in all cases, suboptimal diets significantly reduced the heat tolerance of FAWs, but their effect on cold tolerance was recorded only in select cases (e.g., SCP). These results suggest host plant effects on the physical and thermal fitness of FAW, indicating a considerable degree of resilience against multiple stressors. This pest's resilience can present major drawbacks to its cultural management using suboptimal hosts (in crop rotations or intercrops) through its ability to survive on most host plants despite their water stress condition and gains in thermal fitness. The fate of FAW population persistence under multivariate environmental stresses is therefore not entirely subject to prior environmental host plant history or quality.

4.
Curr Opin Insect Sci ; 50: 100878, 2022 04.
Article in English | MEDLINE | ID: mdl-35093582

ABSTRACT

Global pest invasions have significantly increased in recent years. These invasions together with climate warming directly impact agriculture. Tropical climates feature extreme weather events, including high temperatures and seasonal droughts. Thus, successful invasive pests in tropics have to adapt to these extreme climate features. The intrinsic factors relevant to tropical invasion of insects have been explored in many studies, but the knowledge is rather dispersed in contemporary literature. Here, we reviewed the potential biophysical characters of successful invasive pests' adaption to tropical environments including [1] inherent high basal stress tolerance and advanced life-history performances [2], phenotypic plasticity [3], rapid evolution to environmental stress, polyphagy, diverse reproductive strategies and high fecundity. We summarised how these traits and their interactive effects enhance pest invasions in the tropics. Comprehensive understanding of how these characters facilitate invasion improves models for predicting ecological consequences of climate change on invasive pest species for improved pest management.


Subject(s)
Climate Change , Plastics , Animals , Insecta , Introduced Species , Tropical Climate
5.
Sci Total Environ ; 807(Pt 1): 150575, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34634717

ABSTRACT

Increases in the frequency and magnitude of suboptimal temperatures as a result of climate change are subjecting insects to unprecedented stresses. This may negatively affect their fitness and the efficiency of their ecosystem service provision. Dung beetles are ecosystem service providers: through feeding on and burying dung, they facilitate nutrient recycling, secondary seed dispersal, parasite control, soil bioturbation and dung decomposition. As such, prediction of how dung beetles respond to multiple anthropogenic environmental changes is critical for the conservation of ecosystem services. Here, we quantified ecosystem services via dung utilisation and dung ball production in three telecoprid species: Allogymnopleurus indigaceous, Scarabaeus zambezianus and Khepher prodigiosus. We examined ecosystem service efficiency factorially under different beetle densities towards different dung masses and under three temperature treatments (21 °C, 28 °C and 35 °C). Khepher prodigiosus, exhibited greatest dung utilisation efficiency overall across dung masses, compared to both S. zambezianus and A. indigaceous. Dung removal was exhibited under all the tested temperatures by all tested species, and therefore the sub-optimal temperatures employed here did not fully inhibit ecosystem service delivery. However, emergent effects among temperatures, beetle species and beetle density further affected removal efficiency: S. zambezianus and A. indigaceous utilisation increased with both warming and beetle density, whereas K. prodigiosus performance was less temperature- and density-dependent. Beetles also tended to exhibit positive density-dependence as dung supply increased. The numbers of dung balls produced differed across species, and increased with temperature and densities, with S. zambezianus producing significantly most balls overall. Our study provides novel evidence for differential density-dependent ecosystem service delivery among species across stressful temperature regimes and emergent effects for dung mass utilisation. This information is essential for biodiversity-ecosystem-function and is critical for the conservation of functionally efficacious species, with implications for natural capital conservation policy in rapidly changing environments.


Subject(s)
Coleoptera , Seed Dispersal , Animals , Biodiversity , Ecosystem , Feces , Temperature
6.
Sci Rep ; 11(1): 22192, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34772933

ABSTRACT

Tropical organisms are more vulnerable to climate change and associated heat stress as they live close to their upper thermal limits (UTLs). UTLs do not only vary little across tropical species according to the basal versus plasticity 'trade-off' theory but may also be further constrained by low genetic variation. We tested this hypothesis, and its effects on ecosystem function using a diurnally active dung rolling beetle (telecoprid), Allogymnopleurus thalassinus (Klug, 1855) that inhabits arid environments. Specifically, (i) we tested basal heat tolerance (critical thermal maxima [CTmax] and heat knockdown time [HKDT]), and (ii) ecological functioning (dung removal) efficiency following dynamic chronic acclimation temperatures of variable high (VT-H) (28-45 °C) and variable low (VT-L) (28-16 °C). Results showed that A. thalassinus had extremely high basal heat tolerance (> 50 °C CTmax and high HKDT). Effects of acclimation were significant for heat tolerance, significantly increasing and reducing CTmax values for variable temperature high and variable temperature low respectively. Similarly, effects of acclimation on HKDT were significant, with variable temperature high significantly increasing HKDT, while variable temperature low reduced HKDT. Effects of acclimation on ecological traits showed that beetles acclimated to variable high temperatures were ecologically more efficient in their ecosystem function (dung removal) compared to those acclimated at variable low temperatures. Allogymnopleurus thalassinus nevertheless, had low acclimation response ratios, signifying limited scope for complete plasticity for UTLs tested here. This result supports the 'trade-off' theory, and that observed limited plasticity may unlikely buffer A. thalassinus against effects of climate change, and by extension, albeit with caveats to other tropical ecological service providing insect species. This work provides insights on the survival mechanisms of tropical species against heat and provides a framework for the conservation of these natural capital species that inhabit arid environments under rapidly changing environmental climate.


Subject(s)
Acclimatization , Coleoptera/physiology , Ecosystem , Thermotolerance , Animals , Climate Change , Hot Temperature
7.
Article in English | MEDLINE | ID: mdl-34639855

ABSTRACT

Arthropod vectors play a crucial role in the transmission of many debilitating infections, causing significant morbidity and mortality globally. Despite the economic significance of arthropods to public health, public knowledge on vector biology, ecology and taxonomic status remains anecdotal and largely unexplored. The present study surveyed knowledge gaps regarding the biology and ecology of arthropod vectors in communities of Botswana, across all districts. Results showed that communities are largely aware of individual arthropod vectors; however, their 'potential contribution' in disease transmission in humans, livestock and wildlife could not be fully attested. As such, their knowledge was largely limited with regards to some aspects of vector biology, ecology and control. Communities were strongly concerned about the burden of mosquitoes, cockroaches, flies and ticks, with the least concerns about fleas, bedbugs and lice, although the same communities did not know of specific diseases potentially vectored by these arthropods. Knowledge on arthropod vector control was mainly limited to synthetic chemical pesticides for most respondents, regardless of their location. The limited knowledge on potentially pathogen-incriminated arthropod vectors reported here has large implications for bridging knowledge gaps on the bio-ecology of these vectors countrywide. This is potentially useful in reducing the local burden of associated diseases and preventing the risk of emerging and re-emerging infectious diseases under global change.


Subject(s)
Culicidae , Mosquito Vectors , Animals , Arthropod Vectors , Botswana , Humans , Surveys and Questionnaires
8.
Insect Sci ; 28(4): 1076-1086, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32567803

ABSTRACT

Although reports have documented loss of species diversity and ecological services caused by stressful temperature changes that result from climate change, some species cope through behavioral compensation. As temperatures and magnitudes of temperature extremes increase, animals should compensate to maintain fitness (such as through temporary behavioral shifts in activity times). Appropriate timing of activity helps avoid competition across species. Although coprophagic dung beetles exhibit species-specific temporal activity times, it is unknown whether temperature drives evolution of these species-specific temporal activity times. Using nine dung beetle species (three each of diurnal, crepuscular, and nocturnal species), we explored differences in heat stress tolerance measured as critical thermal maxima (CTmax ; the highest temperature allowing activity) and heat knockdown time (HKDT; survival time under acute heat stress) across these species, and examined the results using a phylogenetically informed approach. Our results showed that day-active species had significantly higher CTmax (diurnal > crepuscular = nocturnal species), whereas crepuscular species had higher HKDT (crepuscular > nocturnal > diurnal species). There was no correlation between heat tolerance and body size across species with distinct temporal activity, and no significant phylogenetic constraint for activity. Species with higher CTmax did not necessarily have higher HKDT, which indicates that species may respond differently to diverse heat tolerance metrics. Acute heat tolerance for diurnal beetles indicates that this trait may constrain activity time and, under high acute temperatures with climate change, species may shift activity times in more benign environments. These results contribute to elucidate the evolution of foraging behavior and management of coprophagic beetle ecosystem services under changing environments.


Subject(s)
Coleoptera/physiology , Thermotolerance , Animals , Biodiversity , Biological Evolution , Body Size , Climate Change , Ecosystem , Feeding Behavior , Hot Temperature , Phylogeny
9.
Insects ; 11(11)2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33171892

ABSTRACT

The South American tomato pinworm Tuta absoluta (Meyrick) has aggressively invaded the African continent. Since its first detection in North Africa in Morocco and Tunisia in 2008, it has successfully invaded the entire southern, eastern and western Africa, where it has been on the offensive, causing significant damage to Solanaceous food crops. While control of this prolific invader is primarily based on conventional synthetic pesticides, this form of control is consistently losing societal approval owing to (1) pesticide resistance development and consequential loss of field efficacy; (2) growing public health concerns; (3) environmental contamination and loss of biological diversity and its associated ecological services; and (4) unsustainable costs, particularly for resource-poor African farmers. As such, more ecologically sound pest management strategies, e.g., the use of natural substances (NSs), may offer a more sustainable approach to tackling this offensive. A systematic literature search through digital libraries and online databases (JSTOR, PubMed, Web of Science, SCOPUS and Google Scholar) was conducted using predetermined keywords on T. absoluta, e.g., South American tomato pinworm. We use this to explain the invasion of T. absoluta in Africa, citing mechanisms facilitating African invasion and exploring the potential of its control using diverse biological control agents, natural and low-risk substances. Specifically, we explore how botanicals, entomopathogens, semiochemicals, predators, parasitoids, host plant resistance, sterile insect technique and others have been spatially employed to control T. absoluta and discuss the potential of these control agents in African landscapes using more integrated approaches. We discuss the use of NSs as assets to general insect pest control, some potential associated liabilities and explain the potential use and barriers to adoption in African systems from a legislative, economic, ecological and social standpoint.

10.
Article in English | MEDLINE | ID: mdl-33171954

ABSTRACT

Mosquitoes account for a significant burden of morbidity and mortality globally. Despite evidence of (1) imminent anthropogenic climate and environmental changes, (2) vector-pathogen spatio-temporal dynamics and (3) emerging and re-emerging mosquito borne infections, public knowledge on mosquito bio-ecology remain scant. In particular, knowledge, attitude and practices (KAPs) on mosquitoes are often neglected despite otherwise expensive remedial efforts against consequent infections and other indirect effects associated with disease burden. To gather baseline KAPs that identify gaps for optimising vector-borne disease control, we surveyed communities across endemic and non-endemic malaria sub-districts (Botswana). The study revealed limited knowledge of mosquitoes and their infections uniformly across endemic and non-endemic areas. In addition, a significant proportion of respondents were concerned about mosquito burdens, although their level of personal, indoor and environmental protection practices varied significantly across sub-districts. Given the limited knowledge displayed by the communities, this study facilitates bridging KAP gaps to minimise disease burdens by strengthening public education. Furthermore, it provides a baseline for future studies in mosquito bio-ecology and desirable control practices across differential spheres of the rural-urban lifestyle, with implications for enhanced livelihoods as a consequence of improved public health.


Subject(s)
Culicidae , Mosquito Control , Animals , Botswana , Female , Health Knowledge, Attitudes, Practice , Humans , Male , Mosquito Vectors
11.
J Therm Biol ; 79: 85-94, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30612691

ABSTRACT

Adaptive thermal plasticity plays a key role in mitigating the effects of seasonal and diurnal thermal fluctuations among ectotherms at various life-stages. While the role of thermal history in conferring such plasticity is widely documented, its interaction with relative humidity (RH), another important driver of ectotherm survival and activity, is relatively underexplored. Yet the potential responses to these combinational stressors across ontogeny remain largely neglected. Against this background, we used a full-factorial design to test the combined acclimation effects of RH (45%, 65% and 85%) and temperature (23, 28 and 33 °C) on various indices of thermal sensitivity of laboratory reared spotted stemborer, Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) following acclimation beginning at larval, pupal and adult life-stages. Traits measured included critical thermal limits (CTLs), supercooling points (SCPs), chill coma recovery time (CCRT) and heat knockdown time (HKDT). Larval acclimation at 23 °C; 85% RH recorded the lowest critical thermal minima (CTmin) whereas adult acclimation at 28 °C; 45% RH recorded the highest critical thermal maxima (CTmax). There were no significant differences (P > 0.05) in SCPs across all temperature × RH acclimations. Larval and pupal acclimations at 23 °C; 85% RH and adult acclimation at 23 °C; 45% RH significantly improved CCRT. Similarly, commencing acclimation at larval, pupal and adult stages at 28 °C; 85% RH improved HKDT whereas larval and pupal acclimations at 33 °C; 45% RH impaired it. Our results indicate that combinational interactions of temperature and RH have significant thermal fitness costs and benefits and are dependent on the life-stage acclimation timing. Results also imply that both the vulnerability and adaptive potential of C. partellus populations under rapid climate variability varies with ontogeny. This therefore calls for the consideration of the role of ontogeny and multi-factors in better understanding the impact of environmental stress on ectotherms.


Subject(s)
Lepidoptera/physiology , Life Cycle Stages , Thermotolerance , Animals , Hot Temperature , Humidity , Lepidoptera/growth & development
12.
PLoS One ; 13(6): e0198610, 2018.
Article in English | MEDLINE | ID: mdl-29874290

ABSTRACT

While the impacts of extreme and rising mean temperatures are well documented, increased thermal variability associated with climate change may also threaten ectotherm fitness and survival, but remains poorly explored. Using three wild collected coprophagic species Copris elphenor, Metacatharsius opacus and Scarabaeus zambezianus, we explored the effects of thermal amplitude around the mean on thermal tolerance. Using standardized protocols, we measured traits of high- (critical thermal maxima [CTmax] and heat knockdown time [HKDT]) and -low temperature tolerance (critical thermal minima [CTmin], chill coma recovery time [CCRT] and supercooling points [SCPs]) following variable temperature pulses (δ0, δ3, δ6 and δ9°C) around the mean (27°C). Our results show that increased temperature variability may offset basal and plastic responses to temperature and differs across species and metrics tested. Furthermore, we also show differential effects of body mass, body water content (BWC) and body lipid content (BLC) on traits of thermal tolerance. For example, body mass significantly influenced C. elphenor and S. zambezianus CTmax and S. zambezianus HKDT but not CTmin and CCRT. BWC significantly affected M. opacus and C. elphenor CTmax and in only M. opacus HKDT, CTmin and CCRT. Similarly, BLC only had a significant effect for M opacus CTmin. These results suggest differential and species dependent effects of climate variability of thermal fitness traits. It is therefore likely that the ecological services provided by these species may be constrained in the face of climate change. This implies that, to develop more realistic predictions for the effects of climate change on insect biodiversity and ecosystem function, thermal variability is a significant determinant.


Subject(s)
Climate , Cold-Shock Response/genetics , Coleoptera/physiology , Thermotolerance/genetics , Animals , Biodiversity , Botswana , Climate Change , Coprophagia/physiology
13.
PLoS One ; 13(2): e0191840, 2018.
Article in English | MEDLINE | ID: mdl-29438408

ABSTRACT

Basal and plasticity of thermal tolerance determine abundance, biogeographical patterns and activity of insects over spatial and temporal scales. For coexisting stemborer parasitoids, offering synergistic impact for biological control, mismatches in thermal tolerance may influence their ultimate impact in biocontrol programs under climate variability. Using laboratory-reared congeneric parasitoid species Cotesia sesamiae Cameron and Cotesia flavipes Cameron (Hymenoptera: Braconidae), we examined basal thermal tolerance to understand potential impact of climate variability on their survival and limits to activity. We measured upper- and lower -lethal temperatures (ULTs and LLTs), critical thermal limits [CTLs] (CTmin and CTmax), supercooling points (SCPs), chill-coma recovery time (CCRT) and heat knock-down time (HKDT) of adults. Results showed LLTs ranging -5 to 5°C and -15 to -1°C whilst ULTs ranged 35 to 42°C and 37 to 44°C for C. sesamiae and C. flavipes respectively. Cotesia flavipes had significantly higher heat tolerance (measured as CTmax), as well as cold tolerance (measured as CTmin) relative to C. sesamiae (P<0.0001). While SCPs did not vary significantly (P>0.05), C. flavipes recovered significantly faster following chill-coma and had higher HKDT compared to C. sesamiae. The results suggest marked differential basal thermal tolerance responses between the two congeners, with C. flavipes having an advantage at both temperature extremes. Thus, under predicted climate change, the two species may differ in phenologies and biogeography with consequences on their efficacy as biological control agents. These results may assist in predicting spatio-temporal activity patterns which can be used in integrated pest management programs under climate variability.


Subject(s)
Hymenoptera/physiology , Temperature , Animals , Hymenoptera/classification , Microclimate , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...